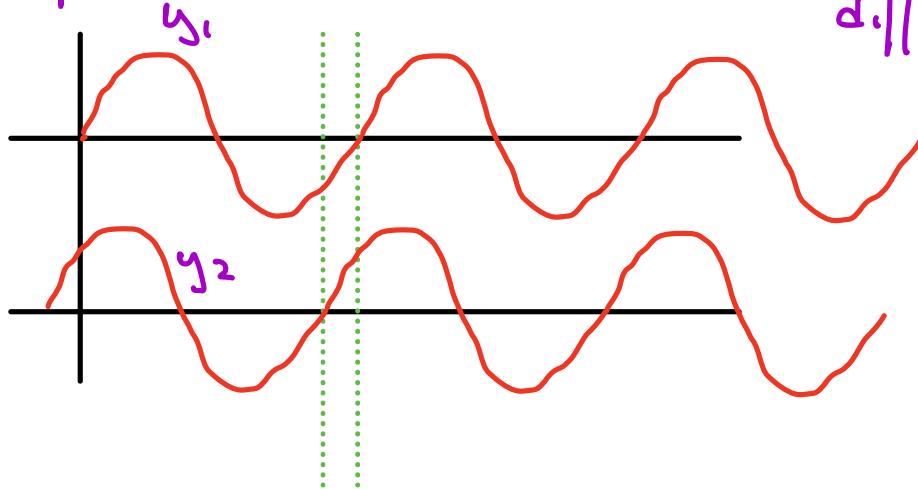


Inference always depends on phase difference of the waves

Recap: waves in 1-Dimension with phase difference ϕ



Start with: ϕ

rewrite as:

$$y_1(x,t) = A \sin(kx - \omega t) \Rightarrow A \sin(kx - \omega t + \frac{1}{2}\phi - \frac{1}{2}\phi)$$

$$y_2(x,t) = A \sin(kx - \omega t + \phi) \Rightarrow A \sin(kx - \omega t + \frac{1}{2}\phi + \frac{1}{2}\phi)$$

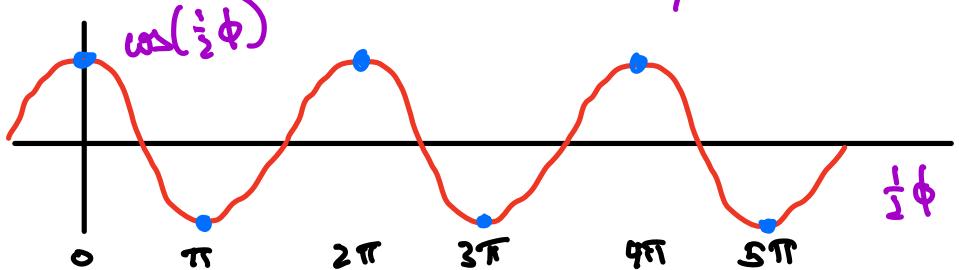
$$\text{use } \sin(a \pm b) = \sin(a) \cos(b) \pm \cos(a) \sin(b)$$

$$\text{let } a = kx - \omega t + \frac{1}{2}\phi, b = \frac{1}{2}\phi$$

$$\begin{aligned}
 y_{\text{tot}} &= y_1 + y_2 = A \sin(a - b) + A \sin(a + b) \\
 &= A \left[\sin(a) \cos(b) - \cos(a) \sin(b) \right] y_1 \\
 &\quad + \left[\sin(a) \cos(b) + \cos(a) \sin(b) \right] y_2 \\
 &= 2A \cos(b) \sin(a)
 \end{aligned}$$

$$\text{so } y_{\text{tot}} = 2A \underbrace{\cos(\frac{1}{2}\phi)}_{\text{amplitude}} \underbrace{\sin(kx - \omega t + \frac{1}{2}\phi)}_{\text{new wave}}$$

y_{tot} amplitude depends on phase difference ϕ
constructive interference: amplitude is max



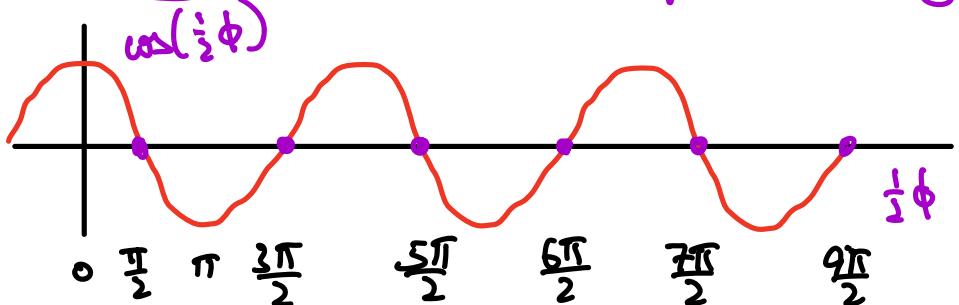
$$\cos(\frac{1}{2}\phi) = \pm 1 \Rightarrow \frac{1}{2}\phi = 0, \pi, 2\pi, \dots$$

$$\phi = 0, 2\pi, 4\pi, \dots$$

$$= n \cdot 2\pi \quad n = 0, 1, 2, \dots$$

so if phase difference between 2 waves is a multiple of 2π , y_{tot} has maximum amplitude

destructive interference: amplitude is zero



$$\cos(\frac{1}{2}\phi) = 0 \Rightarrow \frac{1}{2}\phi = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$$

$$\begin{aligned}\phi &= \pi, 3\pi, 5\pi \dots \\ &= n\pi \quad n = 1, 3, 5, \dots \text{ odd}\end{aligned}$$

$$\left. \begin{array}{l} \text{let } n = 2m+1 \\ \text{then } n = 1, m = 0 \\ \quad \quad \quad \vdots, m = 1 \end{array} \right\} \text{ write } \phi = (2m+1)\pi, m = 0, 1, \dots$$

$$\begin{aligned} &= \left(m + \frac{1}{2}\right)2\pi, m = 0, 1, \dots \\ &= n \cdot 2\pi + \frac{1}{2} \quad n = 0, 1, \dots\end{aligned}$$

phase for:

constructive interference:

$$\phi = 2\pi n \quad n = 0, 1, 2, \dots$$

destructive interference:

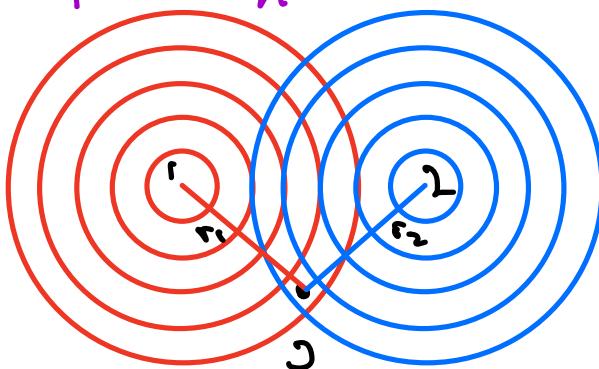
$$\phi = 2\pi n + \frac{1}{2} \quad n = 0, 1, 2, \dots$$

Review of phase differences

lots of ways to have phase differences:

1. constant phase ϕ

2. path difference $\Delta r = r_2 - r_1$



$$\phi = k\Delta r$$

$$\begin{aligned}\text{phase diff} &= \\ k &\propto \Delta r\end{aligned}$$

3. Frequency diff: $\omega_1 \neq \omega_2$, $\omega_1 \neq \omega_2$

$$\left. \begin{array}{l} y_1 = A \sin(k_1 x - \omega_1 t) \\ y_2 = A \sin(k_2 x - \omega_2 t) \end{array} \right\} \omega_1 = \omega_2 = \frac{\omega}{k}$$
$$\Rightarrow k_1 = \frac{\omega_1}{v} \neq k_2 = \frac{\omega_2}{v}$$

$$\begin{aligned} y_1 &= A \sin\left(\frac{\omega_1}{v} x - \omega_1 t\right) \\ &= A \sin\left[\omega_1\left(x - \frac{v}{\omega_1} t\right)\right] \end{aligned}$$

x, v, t are the same for both waves

$$\text{so let } t' = \frac{x - vt}{v}$$

then $y_1 = A \sin(\omega_1 t')$

$$y_2 = A \sin(\omega_2 t')$$

then define $\Delta\omega = \omega_2 - \omega_1$

$$2\bar{\omega} = \omega_2 + \omega_1$$

solve for ω_1, ω_2 : $\omega_1 = \bar{\omega} - \frac{1}{2}\Delta\omega$

$$\omega_2 = \bar{\omega} + \frac{1}{2}\Delta\omega$$

then $y_1 = A \sin\left[\left(\bar{\omega} - \frac{1}{2}\Delta\omega\right)t\right]$

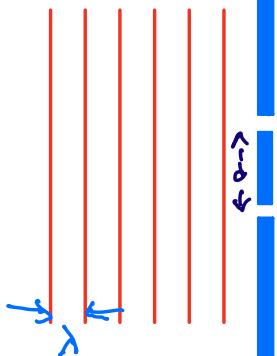
$$y_2 = A \sin\left[\left(\bar{\omega} + \frac{1}{2}\Delta\omega\right)t\right]$$

$$y_{\text{tot}} = y_1 + y_2 = 2A \cos\left(\frac{1}{2}\Delta\omega t\right) \sin(\bar{\omega}t)$$

"beats"

2-slit interference

incoming light
(plane waves)



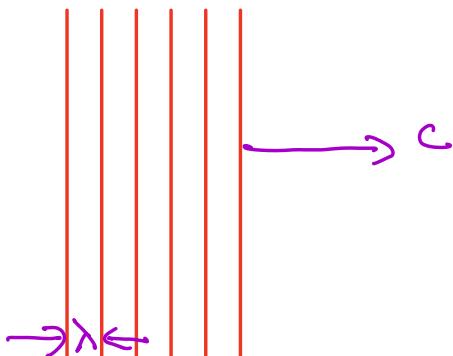
hits screen
with 2 slits
separated by
distance d

slit width is
comparable to
wavelength

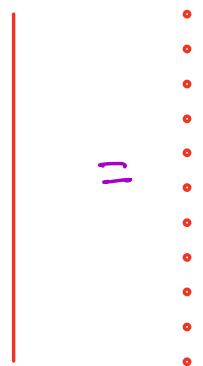
what happens on other side (right side) of slit?

⇒ Huygens Principle:

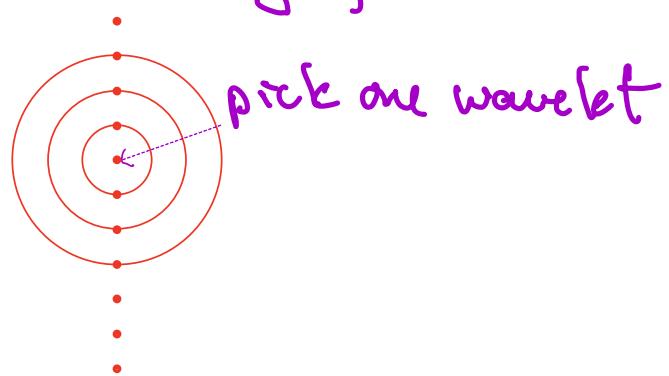
start with light wave front on a plane wave



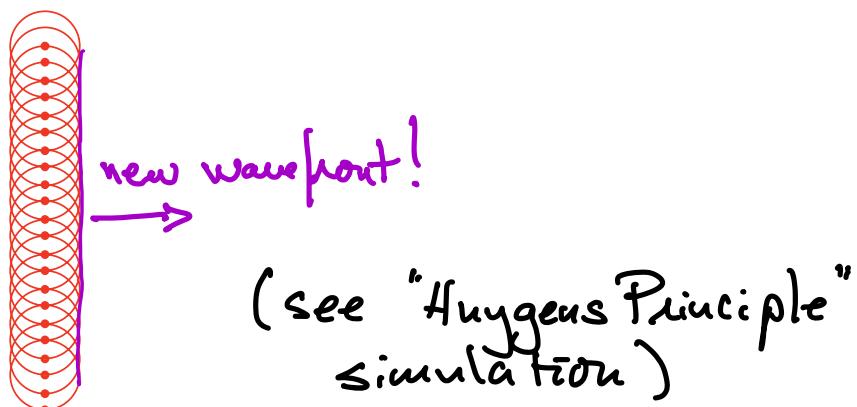
Huygen's theory: decompose wavefront into "wavelets"



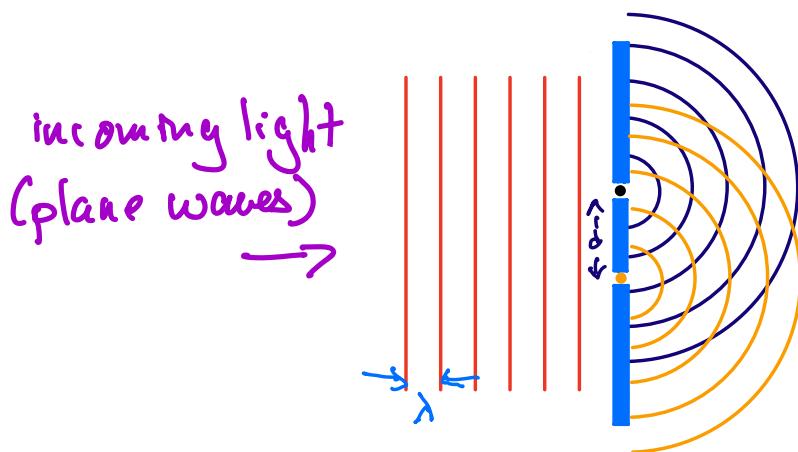
Then let each wavelet send out spherical waves with the same wavelength, in all directions



now add wavelets from all sources

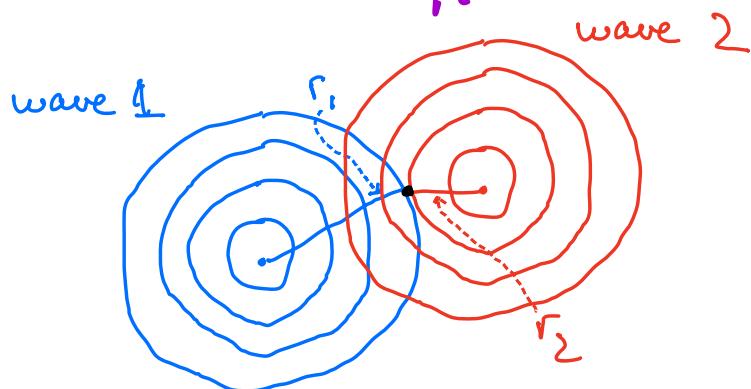


2-slit interference



wavelet at each slit is all that gets through
⇒ slits act like source of 2 waves

⇒ 2 waves interfere at any point on right due to path difference



Condition for CONstructive interference:
⇒ phase diff $k\Delta r = 2\pi n$

Condition for DEstructive interference:
⇒ phase diff $k\Delta r = 2\pi(n + \frac{1}{2})$

using $k = \frac{2\pi}{\lambda}$ we have conditions based on

path difference:

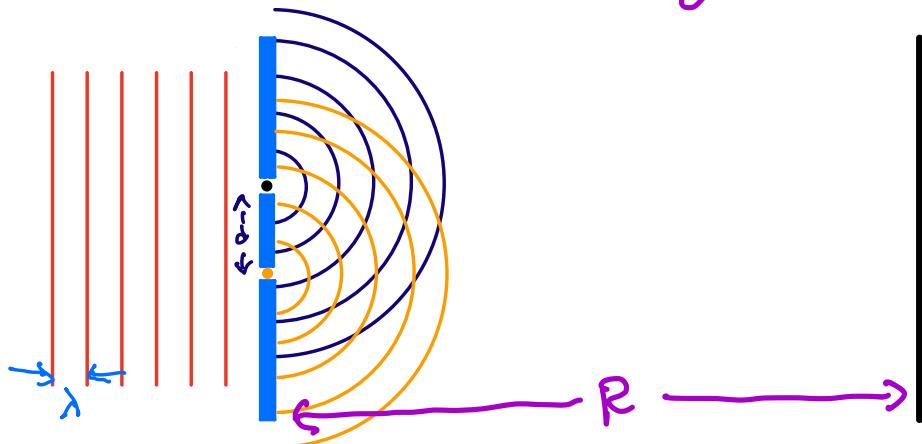
constructive: $\frac{2\pi}{\lambda} \Delta r = 2\pi n$

$$\Delta r = n\lambda$$

destructive: $\frac{2\pi}{\lambda} \Delta r = 2\pi (n + \frac{1}{2})$

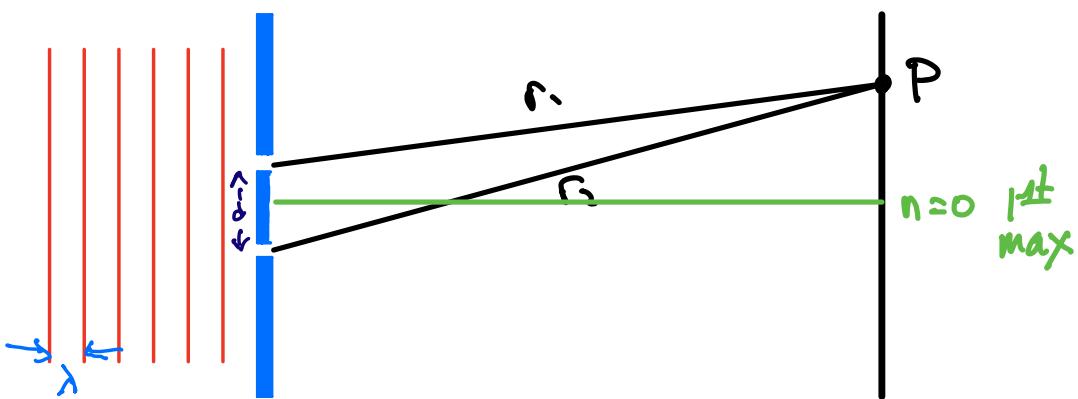
$$\Delta r = (n + \frac{1}{2})\lambda$$

put screen on right side } slits, dist R away



Inference pattern at point P on screen

will be due to path difference from each slit (each wavelet) to that point



at point P will get:

$$\text{constructive: } \Delta r = n\lambda$$

$$\text{destructive: } \Delta r = \left(n + \frac{1}{2}\right)\lambda$$

⇒ so there should be series of points up and down screen where interference goes from min to max to min etc.

MAX: when $\Delta r = n\lambda$

MIN: when $\Delta r = \left(n + \frac{1}{2}\right)\lambda$

$n=0$ is in middle where $\Delta r = 0$ (same path)

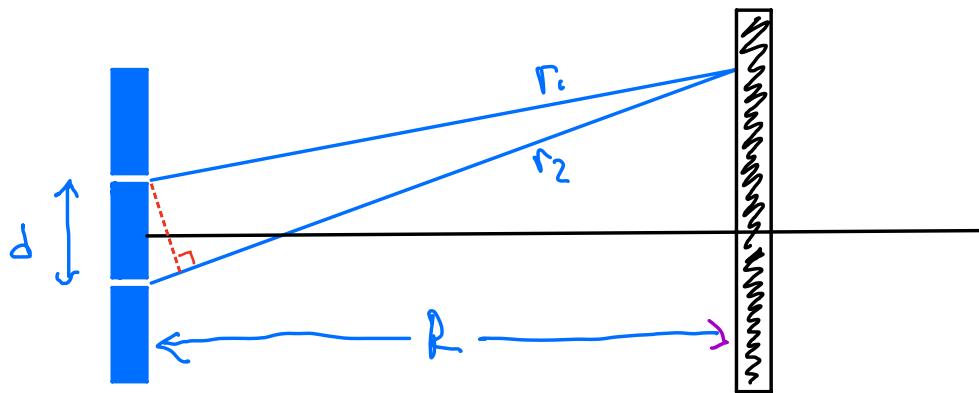
⇒ 1st interference max

Next: calculate angles for MIN & MAX

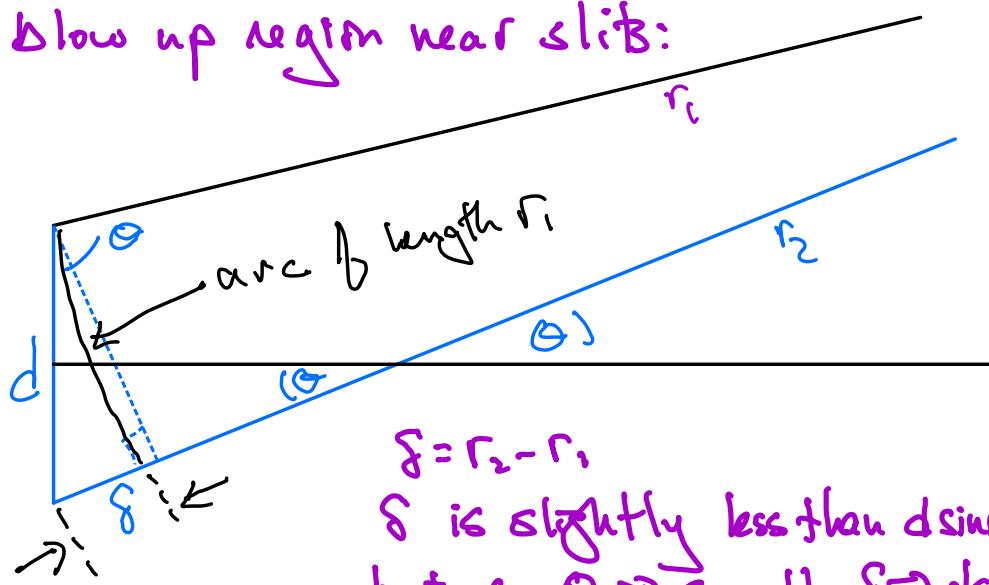
At the screen:

MAX intensity when $\Delta r = n\lambda$

MIN " " " $\Delta r = (n + \frac{1}{2})\lambda$



Blow up region near slits:



$$\delta = r_2 - r_1$$

δ is slightly less than $d \sin \theta$
but as $\theta \rightarrow$ small, $\delta \rightarrow d \sin \theta$

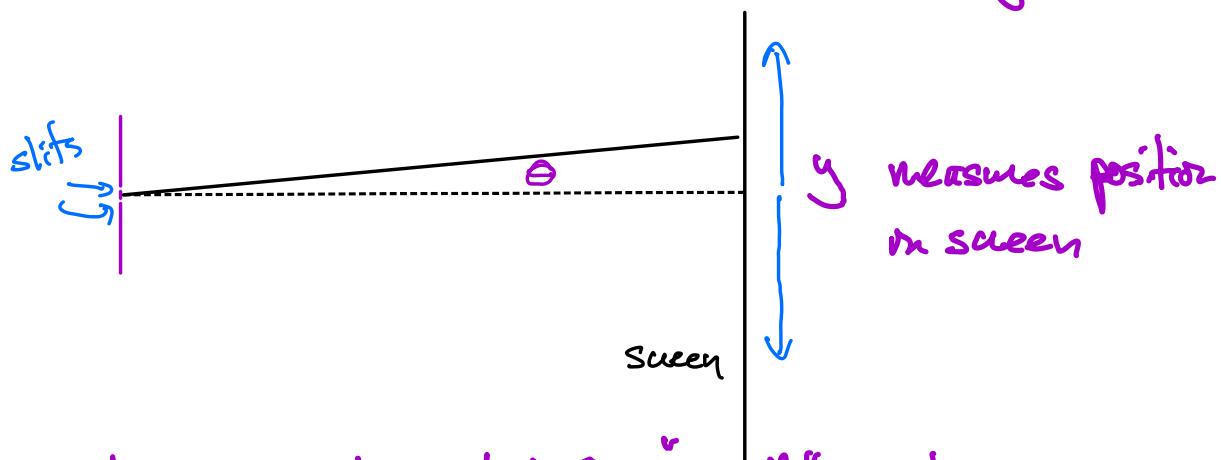
\Rightarrow and as $R \gg d$, then $\theta \rightarrow$ small

\Rightarrow we will always use this small angle limit

$\Delta r = \delta = d \sin \theta = n \lambda$ condition for constructive interference

Similarly $\delta = d \sin \theta = (n + \frac{1}{2})\lambda$ condition for destructive

screen at $R \gg d$, calculate coordinate "y" on screen



$$\tan \theta = y/R \quad \text{but } \theta \sim \text{"small"} \text{ so } \tan \theta \sim \sin \theta$$

$$\sin \theta = y/R \Rightarrow y = R \sin \theta$$

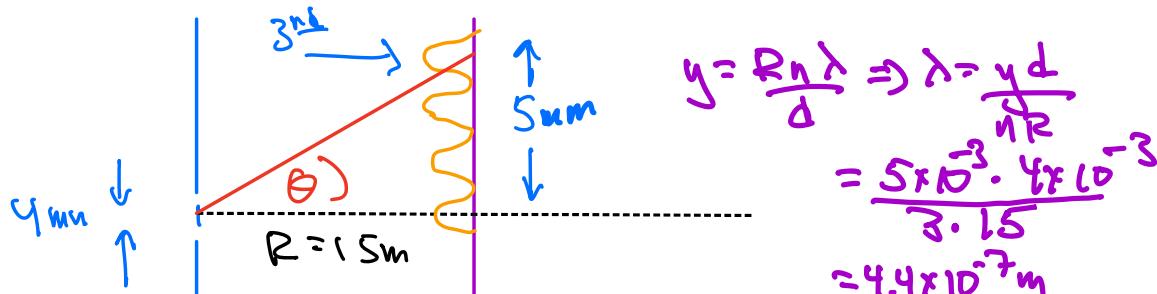
$$\text{and } d \sin \theta = n \lambda$$

$$\text{so } y = \frac{R n \lambda}{d} \quad n = 0, \pm 1, \pm 2, \dots$$

this tells you where the maximum intensities from interference

Example: I have a light source with unknown λ , how can I find λ ?

- place a screen 15 m beyond slits separated by 4 mm
- you measure the 3rd peak above central peak at 5 mm



$$y = \frac{R n \lambda}{d} \Rightarrow \lambda = \frac{y d}{n R}$$

$$= \frac{5 \times 10^{-3} \cdot 4 \times 10^{-3}}{3 \cdot 15}$$

$$= 4.4 \times 10^{-7} \text{ m}$$

200 315

$$\begin{aligned} &= 0.44 \times 10^{-6} \text{ m} \\ &= 440 \text{ nm} \end{aligned}$$

ex: what is width of each peak on screen?

$$1^{\text{st}} \text{ min is at } d \sin \theta_1 = \frac{1}{2} \lambda \quad (n=0)$$

$$2^{\text{nd}} \text{ " " " } d \sin \theta_2 = \frac{3}{2} \lambda \quad (n=1)$$

160 315

$$\text{and } \sin \theta_1 = y_1 / R$$

$$\sin \theta_2 = y_2 / R$$

$$\text{so } \frac{dy_1}{R} = \frac{\lambda}{2} \Rightarrow y_1 = \frac{\lambda R}{2d}$$

$$\frac{dy_2}{R} = \frac{3\lambda}{2} \Rightarrow y_2 = \frac{3\lambda R}{2d} = 3y_1$$

$$\begin{aligned} \Delta y &= y_2 - y_1 = 3y_1 - y_1 = 2y_1 = \frac{\lambda R}{d} \\ &= \frac{440 \times 10^{-9} \times 1.5}{4 \times 10^{-3}} = 1.66 \times 10^{-3} \text{ m} \\ &\Rightarrow 1.65 \text{ mm} \end{aligned}$$

$$\text{shortcut: } y = n \frac{R\lambda}{d}$$

$$\Rightarrow \Delta y = \Delta n \cdot \frac{R\lambda}{d}$$

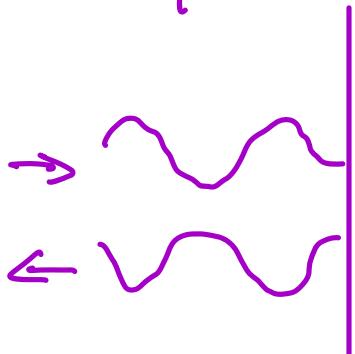
here we want $\Delta n = 1$ to get Δy for 1 maxima

$$\Rightarrow \Delta y = \frac{R\lambda}{d} = \frac{440 \times 10^{-9} \times 1.5}{4 \times 10^{-3}} = 165 \text{ mm}$$

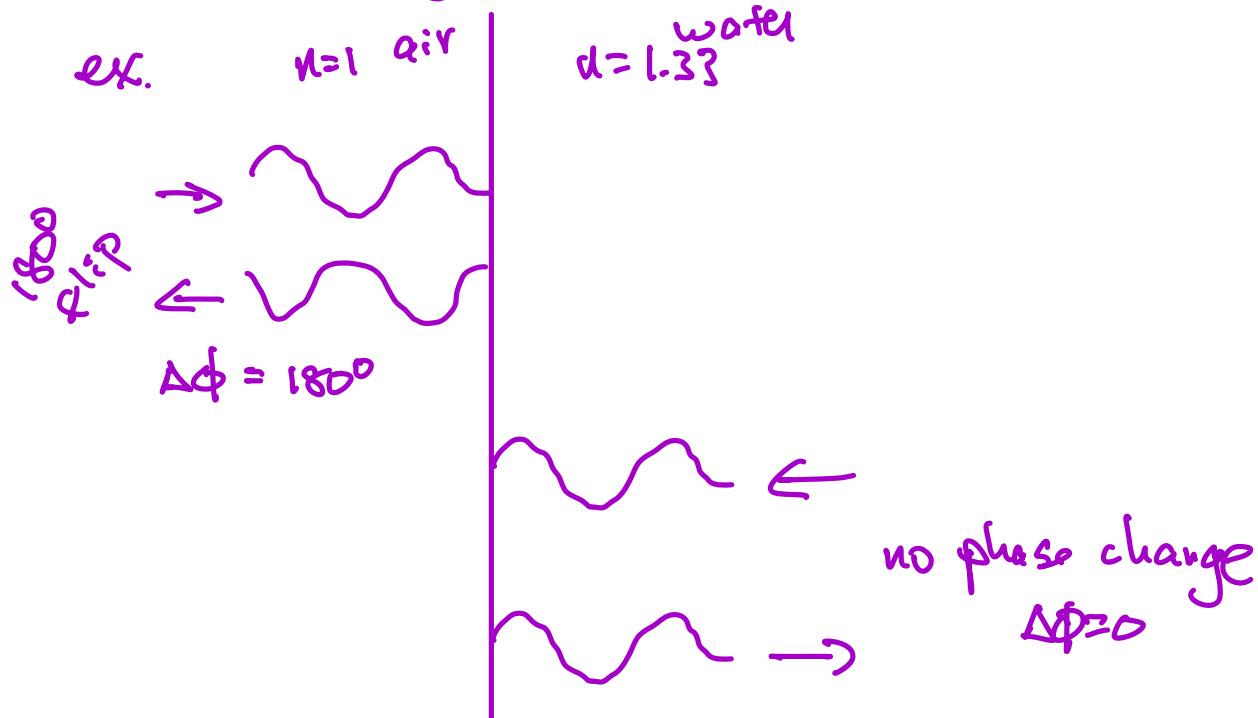
Thin film interference

Light waves reflected at mirror:

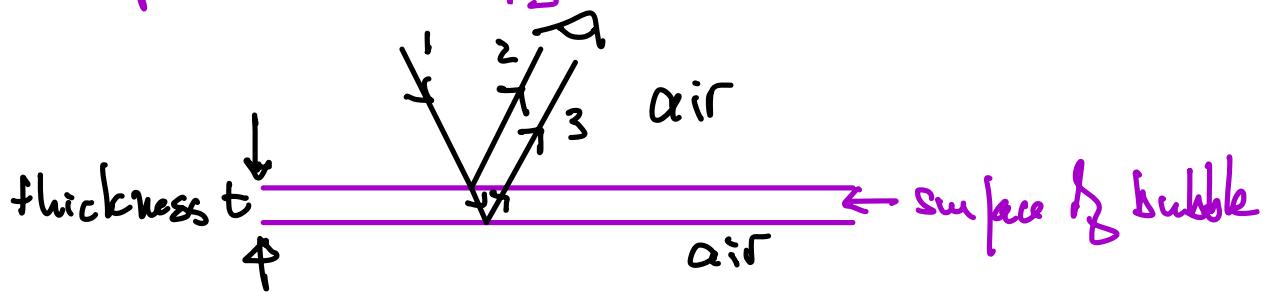
reflected wave phase changes by $180^\circ (\pi)$



At boundary where there is refraction + reflection,
the reflected wave has phase inversion if λ
is increasing (like a mirror)



Soap bubble: soapy water with air on both sides



Wave 2: $\Delta\phi_2 = 180^\circ = \pi$ relative to wave 1

wave 1 refracts ($\Delta\phi \neq 0$) and reflects off bottom surface where n decreases

$$\Delta\phi = 0,$$

also there's a phase diff due to the path Δr given by $\Delta\phi_1 = k\Delta r$
where $\Delta r = 2t$ (ignore angle)

total phase difference

$$\Delta\phi_{\text{tot}} = \Delta\phi_1 - \Delta\phi_2 = k \cdot 2t - \pi$$

trick: can add 2π to $\Delta\phi_{\text{tot}}$ w/ no change

$$\Delta\phi_{\text{tot}} = k \cdot 2t + \pi$$

if $2t < \lambda$ then path difference can be neglected

so $\Delta\phi$ between 2 & 3 is π

\Rightarrow waves interfere destructively

\Leftrightarrow this is why you see dark layers

if $t \sim \lambda$ or bigger, can't ignore path diff

ex: red light $\lambda = 650 \text{ nm}$, $n = 1.33$ in bubble

calculate t so that red light interferes constructively (you see it)

$\Delta\phi$ from thickness path diff

$$\Delta\phi = k\Delta r = k \cdot 2t$$

where $k = \frac{2\pi}{\lambda_n}$ λ_n is wave length inside bubble where the extra path is

you get $180^\circ = \pi$ from 1st reflection

so want another π phase shift due to Δr

$$\frac{2\pi}{\lambda_n} \cdot 2t = \pi \rightarrow$$

$$t = \frac{\lambda_n}{4} = \frac{\lambda/n}{4} = \frac{650/1.33}{4} = 122 \text{ nm}$$

This is why you see colors on soap bubbles - non uniform thickness of bubble

\Rightarrow Can use this to coat lenses so they don't reflect certain colors

ex: lens $n=1.52$ and want to coat so $\lambda=500\text{nm}$ is not reflected.

coating $n_c=1.38$

wave 1: n increases so $\phi > \pi$ for wave 3

wave 2: path diff $2t$ and $\phi = \pi$ at coating-glass surface

total $\Delta\phi = \pi$ 1st reflection

+ π 2nd reflection

+ $k_n \cdot 2t$ path diff

so $2\pi + \frac{2\pi}{\lambda_n} \cdot 2t \Rightarrow 2\pi$ gives in phase so

can ignore it

so want $\frac{2\pi}{\lambda_n} \cdot 2t = \pi$ to get destructive interference

$$t = \frac{\lambda_n}{4} = \frac{500/1.28}{4} = 90.6\text{nm}$$